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Quantum Group Symmetry of the Hubbard Model
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Quantum group symmetry is shown to exist for the Hubbard model. It is extended
to include infinitesimally deformed phonons. A simplified version of Alam’s
model is generalized to include phonons and is shown to have quantum group
symmetry.

The Hubbard model [5] is much studied since it models strongly inter-
acting electron systems. Sometimes it is also used to study high-temperature
superconductivity. Therefore studying its symmetries and extending them (if
possible) is an important task. Several authors [4, 8] have shown that it has
a SO(4) 5 SU(2) 3 SU(2)/Z2 symmetry at half-filling. It it was also shown
that it has SUq(2) 3 SUq(2)/Z2 quantum-group symmetry [6] and it is argued
that this symmetry can be obtained from an ordinary symmetry via a “twist,”
which is not an equivalence transformation. We prefer to work directly
with the quantum–group symmetry for reasons that will be mentioned later.
Recently it has been argued that quantuam-group symmetry is related to high-
temperature superconductivity [2]. Here the model of Montrosi and Rasetti
[6] is extended to include infinitesimally deformed [1] phonons so both
fermionic and bosonic sectors of the model are deformed. In addition, a
simplified version of the stripes model of Alam and Rahman [2] is extended
to include phonons so that its quantum-group symmetry becomes explicit.

We begin with the standard Hubbard Hamiltonian H1,

H1 5 u o
i

ni↑ni↓ 2 m o
i,s

nis 1 l o
^i,j&,s

a†
jsais, nis 5 a†

isais (1)

where aw , a†
is are the fermionic operators with spin s P {↑, ↓} at site i and
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^i, j& are nearest neighbor distinct sites. The generators of SU(2) 3 SU(2)/
Z2 symmetry are

J1
m 5 a†

↑a↓, J2
m 5 (J1

m)†, J 3
m 5 n↑ 2 n↓ (2)

J1
s 5 a‡

↑a†
↓, J2

s 5 (J2
s )†, J 3

s 5 n↑ 1 n↓ 2 1 (3)

The Z2 symmetry comes from the conjugation a↓ } a†
↑. The invariance

of the first two terms in (1) requires half-filling, i.e., m 5 u/2. To include
the nonlocal (third) term, the global operators, e.g., J1

m 5 (i a†
i↑ 2 ai↓ and

similarly for the other operators in (2) and (3), are used.
The generators in (2) and (3) satisfy the SUq(2) relations

[J1
s , J2

s ] 5 (q J3
s

n 2 q2J3
s

n )/(q 2 q21), [J 3
s , J 6

s ] 5 62J6
s (4)

and similarly for the magnetic operators. The proof uses (J 3)3 5 J 3. The
coproduct of the quantum group is defined by

Dq(J6) 5 J6 ^ q2J3/2 1 qJ3/2 ^ J6, Dq(J3) 5 1 ^ J3 1 J3 ^ 1

To include the nonlocal term in the quantum symmetry, the Hamiltonian
H1 in (1) can be modified to include phonons [6]:

H2 5 u o
i

ni↑ni↓ 2 m o
i,s

nis 2 l ? o
i,s

ni,sxi

1 o
i

[(p2
i )/2m 1 1/2mv2x2

i] 1 o
(i,j),s

Ti,ja†
ij,sais 1 h.c. (5)

where xi is the displacement of an ion, pi is the corresponding momentum, and

Ti,j 5 t exp[ik ? (pi 2 pj)]

J̃6 5 J6 exp[72il ? p/hmv2] (6)

The Hamiltonian H2 is invariant under SUq(2) 3 SUq(2)/Z2 provided that

m 5 u/2 2 (l2)/mv2, l 5 hmv2k (7)

So far the quantum symmetry is for the fermionic sector, and therefore
it is proposed here to use infinitesimally deformed [1] phonons instead of
ordinary ones. They are defined by the relations

[x, p] 5 ih 1 i«H0

[H, p] 5 1/2hmv2x

[H, x] 5 2ph/2m

H 5 H0 2 «H 2
0

H0 5 p2/2m 1 mv2x2/2 (8)
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The bosonic deformation parameter is qb . 1 1 « and one linearizes
in «. The new Hamiltonian is

H3 5 H2 2 « o
i

(p2
i /2m 1 1/2mv2x2

i )2

The symmetry requires

l 5 hmv2k

m 5 u/2 2 l2/mv2[1 1 « o
i

(1/2mp2
i 1 1/2mv2x2

i )] (9)

Alam and Rahman [2] proposed a model for stripes in the form of two
interacting fermionic chains. Here a simplified version of their model is
studied and generalized to include phonons. The Hamiltonian is

H3 5 H2(ais, a†
is, u, m, m, v, l, pi , xi , k)

1 H2(bis, b†
is, u8, m8, m, v, l, pi , xi , k) 1 z o

i
nisn8is (10)

where n8is 5 b†
is.

The quantum symmetry requires

m 5 u/2 2 l2/mv2, m8 5 u8/2 2 l2/mv2, l 5 hmv2k (11)

It is interesting to study the infinitesimally deformed fermionic oscilla-
tors and their possible relevance to high-temperature superconductivity. The
deformed fermionic algebra is defined by

{b†
is, bjt} 5 qNdijdst, [N, b†

is] 5 b†
is, [N, bjt] 5 2bjt (12)

where {A, B} 5 AB 1 BA and [A, B] 5 AB 2 BA. Let q 5 1 1 e and
linearize in e. One gets

N . o
s

(b†
sbs) 1 eb†

↑b†
↓b↓b↑ (13)

Since the Hamiltonian is typically proportional to the number operator
N, it should contain a quartic term of the form (13). This term is quite
similar to the one used by Anderson’s group [3] to explain high-temperature
superconductivity. Their Hamiltonian is

H 5 2o
k

T(k)(b(1)†
k↑ b(1)†

2k↓b(2)
2k↓b(2)

k↑ 1 h.c.)

where (1) superscripts and (2) represent different CuO layers or O chains.
There are two interesting features of the quantum symmetry of the

Hubbard model. The first is that phonons can be included naturally without
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breaking the symmetry. This is expected to be relevant since some high-
temperature superconductivity materials show a nonzero isotope effect, which
indicates that phonons should not be negligible. The second feature is that
both magnetic and superconducting symmetries are included. Again this is
expected to be relevant to high-temperature superconductivity. These are
strong motivations to consider quantum groups as relevant to high-tempera-
ture superconductivity, at least as a starting point. It is hoped that this work,
together with others, is a step in the right direction.
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